Source code for sphinx.domains

# -*- coding: utf-8 -*-
"""
    sphinx.domains
    ~~~~~~~~~~~~~~

    Support for domains, which are groupings of description directives
    and roles describing e.g. constructs of one programming language.

    :copyright: Copyright 2007-2015 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

from six import iteritems

from sphinx.errors import SphinxError
from sphinx.locale import _


[docs]class ObjType(object): """ An ObjType is the description for a type of object that a domain can document. In the object_types attribute of Domain subclasses, object type names are mapped to instances of this class. Constructor arguments: - *lname*: localized name of the type (do not include domain name) - *roles*: all the roles that can refer to an object of this type - *attrs*: object attributes -- currently only "searchprio" is known, which defines the object's priority in the full-text search index, see :meth:`Domain.get_objects()`. """ known_attrs = { 'searchprio': 1, } def __init__(self, lname, *roles, **attrs): self.lname = lname self.roles = roles self.attrs = self.known_attrs.copy() self.attrs.update(attrs)
[docs]class Index(object): """ An Index is the description for a domain-specific index. To add an index to a domain, subclass Index, overriding the three name attributes: * `name` is an identifier used for generating file names. * `localname` is the section title for the index. * `shortname` is a short name for the index, for use in the relation bar in HTML output. Can be empty to disable entries in the relation bar. and providing a :meth:`generate()` method. Then, add the index class to your domain's `indices` list. Extensions can add indices to existing domains using :meth:`~sphinx.application.Sphinx.add_index_to_domain()`. """ name = None localname = None shortname = None def __init__(self, domain): if self.name is None or self.localname is None: raise SphinxError('Index subclass %s has no valid name or localname' % self.__class__.__name__) self.domain = domain
[docs] def generate(self, docnames=None): """Return entries for the index given by *name*. If *docnames* is given, restrict to entries referring to these docnames. The return value is a tuple of ``(content, collapse)``, where *collapse* is a boolean that determines if sub-entries should start collapsed (for output formats that support collapsing sub-entries). *content* is a sequence of ``(letter, entries)`` tuples, where *letter* is the "heading" for the given *entries*, usually the starting letter. *entries* is a sequence of single entries, where a single entry is a sequence ``[name, subtype, docname, anchor, extra, qualifier, descr]``. The items in this sequence have the following meaning: - `name` -- the name of the index entry to be displayed - `subtype` -- sub-entry related type: 0 -- normal entry 1 -- entry with sub-entries 2 -- sub-entry - `docname` -- docname where the entry is located - `anchor` -- anchor for the entry within `docname` - `extra` -- extra info for the entry - `qualifier` -- qualifier for the description - `descr` -- description for the entry Qualifier and description are not rendered e.g. in LaTeX output. """ return []
[docs]class Domain(object): """ A Domain is meant to be a group of "object" description directives for objects of a similar nature, and corresponding roles to create references to them. Examples would be Python modules, classes, functions etc., elements of a templating language, Sphinx roles and directives, etc. Each domain has a separate storage for information about existing objects and how to reference them in `self.data`, which must be a dictionary. It also must implement several functions that expose the object information in a uniform way to parts of Sphinx that allow the user to reference or search for objects in a domain-agnostic way. About `self.data`: since all object and cross-referencing information is stored on a BuildEnvironment instance, the `domain.data` object is also stored in the `env.domaindata` dict under the key `domain.name`. Before the build process starts, every active domain is instantiated and given the environment object; the `domaindata` dict must then either be nonexistent or a dictionary whose 'version' key is equal to the domain class' :attr:`data_version` attribute. Otherwise, `IOError` is raised and the pickled environment is discarded. """ #: domain name: should be short, but unique name = '' #: domain label: longer, more descriptive (used in messages) label = '' #: type (usually directive) name -> ObjType instance object_types = {} #: directive name -> directive class directives = {} #: role name -> role callable roles = {} #: a list of Index subclasses indices = [] #: role name -> a warning message if reference is missing dangling_warnings = {} #: data value for a fresh environment initial_data = {} #: data version, bump this when the format of `self.data` changes data_version = 0 def __init__(self, env): self.env = env if self.name not in env.domaindata: assert isinstance(self.initial_data, dict) new_data = self.initial_data.copy() new_data['version'] = self.data_version self.data = env.domaindata[self.name] = new_data else: self.data = env.domaindata[self.name] if self.data['version'] != self.data_version: raise IOError('data of %r domain out of date' % self.label) self._role_cache = {} self._directive_cache = {} self._role2type = {} self._type2role = {} for name, obj in iteritems(self.object_types): for rolename in obj.roles: self._role2type.setdefault(rolename, []).append(name) self._type2role[name] = obj.roles[0] if obj.roles else '' self.objtypes_for_role = self._role2type.get self.role_for_objtype = self._type2role.get
[docs] def role(self, name): """Return a role adapter function that always gives the registered role its full name ('domain:name') as the first argument. """ if name in self._role_cache: return self._role_cache[name] if name not in self.roles: return None fullname = '%s:%s' % (self.name, name) def role_adapter(typ, rawtext, text, lineno, inliner, options={}, content=[]): return self.roles[name](fullname, rawtext, text, lineno, inliner, options, content) self._role_cache[name] = role_adapter return role_adapter
[docs] def directive(self, name): """Return a directive adapter class that always gives the registered directive its full name ('domain:name') as ``self.name``. """ if name in self._directive_cache: return self._directive_cache[name] if name not in self.directives: return None fullname = '%s:%s' % (self.name, name) BaseDirective = self.directives[name] class DirectiveAdapter(BaseDirective): def run(self): self.name = fullname return BaseDirective.run(self) self._directive_cache[name] = DirectiveAdapter return DirectiveAdapter # methods that should be overwritten
[docs] def clear_doc(self, docname): """Remove traces of a document in the domain-specific inventories.""" pass
[docs] def merge_domaindata(self, docnames, otherdata): """Merge in data regarding *docnames* from a different domaindata inventory (coming from a subprocess in parallel builds). """ raise NotImplementedError('merge_domaindata must be implemented in %s ' 'to be able to do parallel builds!' % self.__class__)
[docs] def process_doc(self, env, docname, document): """Process a document after it is read by the environment.""" pass
[docs] def resolve_xref(self, env, fromdocname, builder, typ, target, node, contnode): """Resolve the pending_xref *node* with the given *typ* and *target*. This method should return a new node, to replace the xref node, containing the *contnode* which is the markup content of the cross-reference. If no resolution can be found, None can be returned; the xref node will then given to the 'missing-reference' event, and if that yields no resolution, replaced by *contnode*. The method can also raise :exc:`sphinx.environment.NoUri` to suppress the 'missing-reference' event being emitted. """ pass
[docs] def resolve_any_xref(self, env, fromdocname, builder, target, node, contnode): """Resolve the pending_xref *node* with the given *target*. The reference comes from an "any" or similar role, which means that we don't know the type. Otherwise, the arguments are the same as for :meth:`resolve_xref`. The method must return a list (potentially empty) of tuples ``('domain:role', newnode)``, where ``'domain:role'`` is the name of a role that could have created the same reference, e.g. ``'py:func'``. ``newnode`` is what :meth:`resolve_xref` would return. .. versionadded:: 1.3 """ raise NotImplementedError
[docs] def get_objects(self): """Return an iterable of "object descriptions", which are tuples with five items: * `name` -- fully qualified name * `dispname` -- name to display when searching/linking * `type` -- object type, a key in ``self.object_types`` * `docname` -- the document where it is to be found * `anchor` -- the anchor name for the object * `priority` -- how "important" the object is (determines placement in search results) - 1: default priority (placed before full-text matches) - 0: object is important (placed before default-priority objects) - 2: object is unimportant (placed after full-text matches) - -1: object should not show up in search at all """ return []
[docs] def get_type_name(self, type, primary=False): """Return full name for given ObjType.""" if primary: return type.lname return _('%s %s') % (self.label, type.lname)
from sphinx.domains.c import CDomain # noqa from sphinx.domains.cpp import CPPDomain # noqa from sphinx.domains.std import StandardDomain # noqa from sphinx.domains.python import PythonDomain # noqa from sphinx.domains.javascript import JavaScriptDomain # noqa from sphinx.domains.rst import ReSTDomain # noqa BUILTIN_DOMAINS = { 'std': StandardDomain, 'py': PythonDomain, 'c': CDomain, 'cpp': CPPDomain, 'js': JavaScriptDomain, 'rst': ReSTDomain, }
  Read the Docs
v: develop  
Versions
latest
stable
master
develop
Free document hosting provided by Read the Docs.